12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249 |
- <!DOCTYPE HTML>
- <html>
- <head>
- <meta charset="utf-8">
- <meta http-equiv="X-UA-Compatible" content="IE=edge">
- <meta name="Author" content="M Mclaughlin">
- <title>bignumber.js API</title>
- <style>
- html{font-size:100%}
- body{background:#fff;font-family:"Helvetica Neue",Helvetica,Arial,sans-serif;font-size:13px;
- line-height:1.65em;min-height:100%;margin:0}
- body,i{color:#000}
- .nav{background:#fff;position:fixed;top:0;bottom:0;left:0;width:200px;overflow-y:auto;
- padding:15px 0 30px 15px}
- div.container{width:600px;margin:50px 0 50px 240px}
- p{margin:0 0 1em;width:600px}
- pre,ul{margin:1em 0}
- h1,h2,h3,h4,h5{margin:0;padding:1.5em 0 0}
- h1,h2{padding:.75em 0}
- h1{font:400 3em Verdana,sans-serif;color:#000;margin-bottom:1em}
- h2{font-size:2.25em;color:#ff2a00}
- h3{font-size:1.75em;color:#4dc71f}
- h4{font-size:1.75em;color:#ff2a00;padding-bottom:.75em}
- h5{font-size:1.2em;margin-bottom:.4em}
- h6{font-size:1.1em;margin-bottom:0.8em;padding:0.5em 0}
- dd{padding-top:.35em}
- dt{padding-top:.5em}
- b{font-weight:700}
- dt b{font-size:1.3em}
- a,a:visited{color:#ff2a00;text-decoration:none}
- a:active,a:hover{outline:0;text-decoration:underline}
- .nav a,.nav b,.nav a:visited{display:block;color:#ff2a00;font-weight:700; margin-top:15px}
- .nav b{color:#4dc71f;margin-top:20px;cursor:default;width:auto}
- ul{list-style-type:none;padding:0 0 0 20px}
- .nav ul{line-height:14px;padding-left:0;margin:5px 0 0}
- .nav ul a,.nav ul a:visited,span{display:inline;color:#000;font-family:Verdana,Geneva,sans-serif;
- font-size:11px;font-weight:400;margin:0}
- .inset,ul.inset{margin-left:20px}
- .inset{font-size:.9em}
- .nav li{width:auto;margin:0 0 3px}
- .alias{font-style:italic;margin-left:20px}
- table{border-collapse:collapse;border-spacing:0;border:2px solid #a7dbd8;margin:1.75em 0;padding:0}
- td,th{text-align:left;margin:0;padding:2px 5px;border:1px dotted #a7dbd8}
- th{border-top:2px solid #a7dbd8;border-bottom:2px solid #a7dbd8;color:#ff2a00}
- code,pre{font-family:Consolas, monaco, monospace;font-weight:400}
- pre{background:#f5f5f5;white-space:pre-wrap;word-wrap:break-word;border-left:5px solid #abef98;
- padding:1px 0 1px 15px;margin:1.2em 0}
- code,.nav-title{color:#ff2a00}
- .end{margin-bottom:25px}
- .centre{text-align:center}
- .error-table{font-size:13px;width:100%}
- #faq{margin:3em 0 0}
- li span{float:right;margin-right:10px;color:#c0c0c0}
- #js{font:inherit;color:#4dc71f}
- </style>
- </head>
- <body>
- <div class="nav">
- <b>v9.0.2</b>
- <a class='nav-title' href="#">API</a>
- <b> CONSTRUCTOR </b>
- <ul>
- <li><a href="#bignumber">BigNumber</a></li>
- </ul>
- <a href="#methods">Methods</a>
- <ul>
- <li><a href="#clone">clone</a></li>
- <li><a href="#config" >config</a><span>set</span></li>
- <li>
- <ul class="inset">
- <li><a href="#decimal-places">DECIMAL_PLACES</a></li>
- <li><a href="#rounding-mode" >ROUNDING_MODE</a></li>
- <li><a href="#exponential-at">EXPONENTIAL_AT</a></li>
- <li><a href="#range" >RANGE</a></li>
- <li><a href="#crypto" >CRYPTO</a></li>
- <li><a href="#modulo-mode" >MODULO_MODE</a></li>
- <li><a href="#pow-precision" >POW_PRECISION</a></li>
- <li><a href="#format" >FORMAT</a></li>
- <li><a href="#alphabet" >ALPHABET</a></li>
- </ul>
- </li>
- <li><a href="#isBigNumber">isBigNumber</a></li>
- <li><a href="#max" >maximum</a><span>max</span></li>
- <li><a href="#min" >minimum</a><span>min</span></li>
- <li><a href="#random" >random</a></li>
- <li><a href="#sum" >sum</a></li>
- </ul>
- <a href="#constructor-properties">Properties</a>
- <ul>
- <li><a href="#round-up" >ROUND_UP</a></li>
- <li><a href="#round-down" >ROUND_DOWN</a></li>
- <li><a href="#round-ceil" >ROUND_CEIL</a></li>
- <li><a href="#round-floor" >ROUND_FLOOR</a></li>
- <li><a href="#round-half-up" >ROUND_HALF_UP</a></li>
- <li><a href="#round-half-down" >ROUND_HALF_DOWN</a></li>
- <li><a href="#round-half-even" >ROUND_HALF_EVEN</a></li>
- <li><a href="#round-half-ceil" >ROUND_HALF_CEIL</a></li>
- <li><a href="#round-half-floor">ROUND_HALF_FLOOR</a></li>
- <li><a href="#debug" >DEBUG</a></li>
- </ul>
- <b> INSTANCE </b>
- <a href="#prototype-methods">Methods</a>
- <ul>
- <li><a href="#abs" >absoluteValue </a><span>abs</span> </li>
- <li><a href="#cmp" >comparedTo </a> </li>
- <li><a href="#dp" >decimalPlaces </a><span>dp</span> </li>
- <li><a href="#div" >dividedBy </a><span>div</span> </li>
- <li><a href="#divInt" >dividedToIntegerBy </a><span>idiv</span> </li>
- <li><a href="#pow" >exponentiatedBy </a><span>pow</span> </li>
- <li><a href="#int" >integerValue </a> </li>
- <li><a href="#eq" >isEqualTo </a><span>eq</span> </li>
- <li><a href="#isF" >isFinite </a> </li>
- <li><a href="#gt" >isGreaterThan </a><span>gt</span> </li>
- <li><a href="#gte" >isGreaterThanOrEqualTo</a><span>gte</span> </li>
- <li><a href="#isInt" >isInteger </a> </li>
- <li><a href="#lt" >isLessThan </a><span>lt</span> </li>
- <li><a href="#lte" >isLessThanOrEqualTo </a><span>lte</span> </li>
- <li><a href="#isNaN" >isNaN </a> </li>
- <li><a href="#isNeg" >isNegative </a> </li>
- <li><a href="#isPos" >isPositive </a> </li>
- <li><a href="#isZ" >isZero </a> </li>
- <li><a href="#minus" >minus </a> </li>
- <li><a href="#mod" >modulo </a><span>mod</span> </li>
- <li><a href="#times" >multipliedBy </a><span>times</span></li>
- <li><a href="#neg" >negated </a> </li>
- <li><a href="#plus" >plus </a> </li>
- <li><a href="#sd" >precision </a><span>sd</span> </li>
- <li><a href="#shift" >shiftedBy </a> </li>
- <li><a href="#sqrt" >squareRoot </a><span>sqrt</span> </li>
- <li><a href="#toE" >toExponential </a> </li>
- <li><a href="#toFix" >toFixed </a> </li>
- <li><a href="#toFor" >toFormat </a> </li>
- <li><a href="#toFr" >toFraction </a> </li>
- <li><a href="#toJSON" >toJSON </a> </li>
- <li><a href="#toN" >toNumber </a> </li>
- <li><a href="#toP" >toPrecision </a> </li>
- <li><a href="#toS" >toString </a> </li>
- <li><a href="#valueOf">valueOf </a> </li>
- </ul>
- <a href="#instance-properties">Properties</a>
- <ul>
- <li><a href="#coefficient">c: coefficient</a></li>
- <li><a href="#exponent" >e: exponent</a></li>
- <li><a href="#sign" >s: sign</a></li>
- </ul>
- <a href="#zero-nan-infinity">Zero, NaN & Infinity</a>
- <a href="#Errors">Errors</a>
- <a href="#type-coercion">Type coercion</a>
- <a class='end' href="#faq">FAQ</a>
- </div>
- <div class="container">
- <h1>bignumber<span id='js'>.js</span></h1>
- <p>A JavaScript library for arbitrary-precision arithmetic.</p>
- <p><a href="https://github.com/MikeMcl/bignumber.js">Hosted on GitHub</a>. </p>
- <h2>API</h2>
- <p>
- See the <a href='https://github.com/MikeMcl/bignumber.js'>README</a> on GitHub for a
- quick-start introduction.
- </p>
- <p>
- In all examples below, <code>var</code> and semicolons are not shown, and if a commented-out
- value is in quotes it means <code>toString</code> has been called on the preceding expression.
- </p>
- <h3>CONSTRUCTOR</h3>
- <h5 id="bignumber">
- BigNumber<code class='inset'>BigNumber(n [, base]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i>: integer, <code>2</code> to <code>36</code> inclusive. (See
- <a href='#alphabet'><code>ALPHABET</code></a> to extend this range).
- </p>
- <p>
- Returns a new instance of a BigNumber object with value <code>n</code>, where <code>n</code>
- is a numeric value in the specified <code>base</code>, or base <code>10</code> if
- <code>base</code> is omitted or is <code>null</code> or <code>undefined</code>.
- </p>
- <p>
- Note that the BigNnumber constructor accepts an <code>n</code> of type <em>number</em> purely
- as a convenience so that string quotes don't have to be typed when entering literal values,
- and that it is the <code>toString</code> value of <code>n</code> that is used rather than its
- underlying binary floating point value converted to decimal.
- </p>
- <pre>
- x = new BigNumber(123.4567) // '123.4567'
- // 'new' is optional
- y = BigNumber(x) // '123.4567'</pre>
- <p>
- If <code>n</code> is a base <code>10</code> value it can be in normal or exponential notation.
- Values in other bases must be in normal notation. Values in any base can have fraction digits,
- i.e. digits after the decimal point.
- </p>
- <pre>
- new BigNumber(43210) // '43210'
- new BigNumber('4.321e+4') // '43210'
- new BigNumber('-735.0918e-430') // '-7.350918e-428'
- new BigNumber('123412421.234324', 5) // '607236.557696'</pre>
- <p>
- Signed <code>0</code>, signed <code>Infinity</code> and <code>NaN</code> are supported.
- </p>
- <pre>
- new BigNumber('-Infinity') // '-Infinity'
- new BigNumber(NaN) // 'NaN'
- new BigNumber(-0) // '0'
- new BigNumber('.5') // '0.5'
- new BigNumber('+2') // '2'</pre>
- <p>
- String values in hexadecimal literal form, e.g. <code>'0xff'</code> or <code>'0xFF'</code>
- (but not <code>'0xfF'</code>), are valid, as are string values with the octal and binary
- prefixs <code>'0o'</code> and <code>'0b'</code>. String values in octal literal form without
- the prefix will be interpreted as decimals, e.g. <code>'011'</code> is interpreted as 11, not 9.
- </p>
- <pre>
- new BigNumber(-10110100.1, 2) // '-180.5'
- new BigNumber('-0b10110100.1') // '-180.5'
- new BigNumber('ff.8', 16) // '255.5'
- new BigNumber('0xff.8') // '255.5'</pre>
- <p>
- If a base is specified, <code>n</code> is rounded according to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> settings. <em>This includes base
- <code>10</code> so don't include a <code>base</code> parameter for decimal values unless
- this behaviour is wanted.</em>
- </p>
- <pre>BigNumber.config({ DECIMAL_PLACES: 5 })
- new BigNumber(1.23456789) // '1.23456789'
- new BigNumber(1.23456789, 10) // '1.23457'</pre>
- <p>An error is thrown if <code>base</code> is invalid. See <a href='#Errors'>Errors</a>.</p>
- <p>
- There is no limit to the number of digits of a value of type <em>string</em> (other than
- that of JavaScript's maximum array size). See <a href='#range'><code>RANGE</code></a> to set
- the maximum and minimum possible exponent value of a BigNumber.
- </p>
- <pre>
- new BigNumber('5032485723458348569331745.33434346346912144534543')
- new BigNumber('4.321e10000000')</pre>
- <p>BigNumber <code>NaN</code> is returned if <code>n</code> is invalid
- (unless <code>BigNumber.DEBUG</code> is <code>true</code>, see below).</p>
- <pre>
- new BigNumber('.1*') // 'NaN'
- new BigNumber('blurgh') // 'NaN'
- new BigNumber(9, 2) // 'NaN'</pre>
- <p>
- To aid in debugging, if <code>BigNumber.DEBUG</code> is <code>true</code> then an error will
- be thrown on an invalid <code>n</code>. An error will also be thrown if <code>n</code> is of
- type <em>number</em> and has more than <code>15</code> significant digits, as calling
- <code><a href='#toS'>toString</a></code> or <code><a href='#valueOf'>valueOf</a></code> on
- these numbers may not result in the intended value.
- </p>
- <pre>
- console.log(823456789123456.3) // 823456789123456.2
- new BigNumber(823456789123456.3) // '823456789123456.2'
- BigNumber.DEBUG = true
- // '[BigNumber Error] Number primitive has more than 15 significant digits'
- new BigNumber(823456789123456.3)
- // '[BigNumber Error] Not a base 2 number'
- new BigNumber(9, 2)</pre>
- <p>
- A BigNumber can also be created from an object literal.
- Use <code><a href='#isBigNumber'>isBigNumber</a></code> to check that it is well-formed.
- </p>
- <pre>new BigNumber({ s: 1, e: 2, c: [ 777, 12300000000000 ], _isBigNumber: true }) // '777.123'</pre>
- <h4 id="methods">Methods</h4>
- <p>The static methods of a BigNumber constructor.</p>
- <h5 id="clone">clone
- <code class='inset'>.clone([object]) <i>⇒ BigNumber constructor</i></code>
- </h5>
- <p><code>object</code>: <i>object</i></p>
- <p>
- Returns a new independent BigNumber constructor with configuration as described by
- <code>object</code> (see <a href='#config'><code>config</code></a>), or with the default
- configuration if <code>object</code> is <code>null</code> or <code>undefined</code>.
- </p>
- <p>
- Throws if <code>object</code> is not an object. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>BigNumber.config({ DECIMAL_PLACES: 5 })
- BN = BigNumber.clone({ DECIMAL_PLACES: 9 })
- x = new BigNumber(1)
- y = new BN(1)
- x.div(3) // 0.33333
- y.div(3) // 0.333333333
- // BN = BigNumber.clone({ DECIMAL_PLACES: 9 }) is equivalent to:
- BN = BigNumber.clone()
- BN.config({ DECIMAL_PLACES: 9 })</pre>
- <h5 id="config">config<code class='inset'>set([object]) <i>⇒ object</i></code></h5>
- <p>
- <code>object</code>: <i>object</i>: an object that contains some or all of the following
- properties.
- </p>
- <p>Configures the settings for this particular BigNumber constructor.</p>
- <dl class='inset'>
- <dt id="decimal-places"><code><b>DECIMAL_PLACES</b></code></dt>
- <dd>
- <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
- Default value: <code>20</code>
- </dd>
- <dd>
- The <em>maximum</em> number of decimal places of the results of operations involving
- division, i.e. division, square root and base conversion operations, and power operations
- with negative exponents.<br />
- </dd>
- <dd>
- <pre>BigNumber.config({ DECIMAL_PLACES: 5 })
- BigNumber.set({ DECIMAL_PLACES: 5 }) // equivalent</pre>
- </dd>
- <dt id="rounding-mode"><code><b>ROUNDING_MODE</b></code></dt>
- <dd>
- <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive<br />
- Default value: <code>4</code> <a href="#round-half-up">(<code>ROUND_HALF_UP</code>)</a>
- </dd>
- <dd>
- The rounding mode used in the above operations and the default rounding mode of
- <a href='#dp'><code>decimalPlaces</code></a>,
- <a href='#sd'><code>precision</code></a>,
- <a href='#toE'><code>toExponential</code></a>,
- <a href='#toFix'><code>toFixed</code></a>,
- <a href='#toFor'><code>toFormat</code></a> and
- <a href='#toP'><code>toPrecision</code></a>.
- </dd>
- <dd>The modes are available as enumerated properties of the BigNumber constructor.</dd>
- <dd>
- <pre>BigNumber.config({ ROUNDING_MODE: 0 })
- BigNumber.set({ ROUNDING_MODE: BigNumber.ROUND_UP }) // equivalent</pre>
- </dd>
- <dt id="exponential-at"><code><b>EXPONENTIAL_AT</b></code></dt>
- <dd>
- <i>number</i>: integer, magnitude <code>0</code> to <code>1e+9</code> inclusive, or
- <br />
- <i>number</i>[]: [ integer <code>-1e+9</code> to <code>0</code> inclusive, integer
- <code>0</code> to <code>1e+9</code> inclusive ]<br />
- Default value: <code>[-7, 20]</code>
- </dd>
- <dd>
- The exponent value(s) at which <code>toString</code> returns exponential notation.
- </dd>
- <dd>
- If a single number is assigned, the value is the exponent magnitude.<br />
- If an array of two numbers is assigned then the first number is the negative exponent
- value at and beneath which exponential notation is used, and the second number is the
- positive exponent value at and above which the same.
- </dd>
- <dd>
- For example, to emulate JavaScript numbers in terms of the exponent values at which they
- begin to use exponential notation, use <code>[-7, 20]</code>.
- </dd>
- <dd>
- <pre>BigNumber.config({ EXPONENTIAL_AT: 2 })
- new BigNumber(12.3) // '12.3' e is only 1
- new BigNumber(123) // '1.23e+2'
- new BigNumber(0.123) // '0.123' e is only -1
- new BigNumber(0.0123) // '1.23e-2'
- BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
- new BigNumber(123456789) // '123456789' e is only 8
- new BigNumber(0.000000123) // '1.23e-7'
- // Almost never return exponential notation:
- BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
- // Always return exponential notation:
- BigNumber.config({ EXPONENTIAL_AT: 0 })</pre>
- </dd>
- <dd>
- Regardless of the value of <code>EXPONENTIAL_AT</code>, the <code>toFixed</code> method
- will always return a value in normal notation and the <code>toExponential</code> method
- will always return a value in exponential form.
- </dd>
- <dd>
- Calling <code>toString</code> with a base argument, e.g. <code>toString(10)</code>, will
- also always return normal notation.
- </dd>
- <dt id="range"><code><b>RANGE</b></code></dt>
- <dd>
- <i>number</i>: integer, magnitude <code>1</code> to <code>1e+9</code> inclusive, or
- <br />
- <i>number</i>[]: [ integer <code>-1e+9</code> to <code>-1</code> inclusive, integer
- <code>1</code> to <code>1e+9</code> inclusive ]<br />
- Default value: <code>[-1e+9, 1e+9]</code>
- </dd>
- <dd>
- The exponent value(s) beyond which overflow to <code>Infinity</code> and underflow to
- zero occurs.
- </dd>
- <dd>
- If a single number is assigned, it is the maximum exponent magnitude: values wth a
- positive exponent of greater magnitude become <code>Infinity</code> and those with a
- negative exponent of greater magnitude become zero.
- <dd>
- If an array of two numbers is assigned then the first number is the negative exponent
- limit and the second number is the positive exponent limit.
- </dd>
- <dd>
- For example, to emulate JavaScript numbers in terms of the exponent values at which they
- become zero and <code>Infinity</code>, use <code>[-324, 308]</code>.
- </dd>
- <dd>
- <pre>BigNumber.config({ RANGE: 500 })
- BigNumber.config().RANGE // [ -500, 500 ]
- new BigNumber('9.999e499') // '9.999e+499'
- new BigNumber('1e500') // 'Infinity'
- new BigNumber('1e-499') // '1e-499'
- new BigNumber('1e-500') // '0'
- BigNumber.config({ RANGE: [-3, 4] })
- new BigNumber(99999) // '99999' e is only 4
- new BigNumber(100000) // 'Infinity' e is 5
- new BigNumber(0.001) // '0.01' e is only -3
- new BigNumber(0.0001) // '0' e is -4</pre>
- </dd>
- <dd>
- The largest possible magnitude of a finite BigNumber is
- <code>9.999...e+1000000000</code>.<br />
- The smallest possible magnitude of a non-zero BigNumber is <code>1e-1000000000</code>.
- </dd>
- <dt id="crypto"><code><b>CRYPTO</b></code></dt>
- <dd>
- <i>boolean</i>: <code>true</code> or <code>false</code>.<br />
- Default value: <code>false</code>
- </dd>
- <dd>
- The value that determines whether cryptographically-secure pseudo-random number
- generation is used.
- </dd>
- <dd>
- If <code>CRYPTO</code> is set to <code>true</code> then the
- <a href='#random'><code>random</code></a> method will generate random digits using
- <code>crypto.getRandomValues</code> in browsers that support it, or
- <code>crypto.randomBytes</code> if using Node.js.
- </dd>
- <dd>
- If neither function is supported by the host environment then attempting to set
- <code>CRYPTO</code> to <code>true</code> will fail and an exception will be thrown.
- </dd>
- <dd>
- If <code>CRYPTO</code> is <code>false</code> then the source of randomness used will be
- <code>Math.random</code> (which is assumed to generate at least <code>30</code> bits of
- randomness).
- </dd>
- <dd>See <a href='#random'><code>random</code></a>.</dd>
- <dd>
- <pre>
- // Node.js
- const crypto = require('crypto'); // CommonJS
- import * as crypto from 'crypto'; // ES module
- global.crypto = crypto;
- BigNumber.config({ CRYPTO: true })
- BigNumber.config().CRYPTO // true
- BigNumber.random() // 0.54340758610486147524</pre>
- </dd>
- <dt id="modulo-mode"><code><b>MODULO_MODE</b></code></dt>
- <dd>
- <i>number</i>: integer, <code>0</code> to <code>9</code> inclusive<br />
- Default value: <code>1</code> (<a href="#round-down"><code>ROUND_DOWN</code></a>)
- </dd>
- <dd>The modulo mode used when calculating the modulus: <code>a mod n</code>.</dd>
- <dd>
- The quotient, <code>q = a / n</code>, is calculated according to the
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> that corresponds to the chosen
- <code>MODULO_MODE</code>.
- </dd>
- <dd>The remainder, <code>r</code>, is calculated as: <code>r = a - n * q</code>.</dd>
- <dd>
- The modes that are most commonly used for the modulus/remainder operation are shown in
- the following table. Although the other rounding modes can be used, they may not give
- useful results.
- </dd>
- <dd>
- <table>
- <tr><th>Property</th><th>Value</th><th>Description</th></tr>
- <tr>
- <td><b>ROUND_UP</b></td><td class='centre'>0</td>
- <td>
- The remainder is positive if the dividend is negative, otherwise it is negative.
- </td>
- </tr>
- <tr>
- <td><b>ROUND_DOWN</b></td><td class='centre'>1</td>
- <td>
- The remainder has the same sign as the dividend.<br />
- This uses 'truncating division' and matches the behaviour of JavaScript's
- remainder operator <code>%</code>.
- </td>
- </tr>
- <tr>
- <td><b>ROUND_FLOOR</b></td><td class='centre'>3</td>
- <td>
- The remainder has the same sign as the divisor.<br />
- This matches Python's <code>%</code> operator.
- </td>
- </tr>
- <tr>
- <td><b>ROUND_HALF_EVEN</b></td><td class='centre'>6</td>
- <td>The <i>IEEE 754</i> remainder function.</td>
- </tr>
- <tr>
- <td><b>EUCLID</b></td><td class='centre'>9</td>
- <td>
- The remainder is always positive. Euclidian division: <br />
- <code>q = sign(n) * floor(a / abs(n))</code>
- </td>
- </tr>
- </table>
- </dd>
- <dd>
- The rounding/modulo modes are available as enumerated properties of the BigNumber
- constructor.
- </dd>
- <dd>See <a href='#mod'><code>modulo</code></a>.</dd>
- <dd>
- <pre>BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
- BigNumber.config({ MODULO_MODE: 9 }) // equivalent</pre>
- </dd>
- <dt id="pow-precision"><code><b>POW_PRECISION</b></code></dt>
- <dd>
- <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive.<br />
- Default value: <code>0</code>
- </dd>
- <dd>
- The <i>maximum</i> precision, i.e. number of significant digits, of the result of the power
- operation (unless a modulus is specified).
- </dd>
- <dd>If set to <code>0</code>, the number of significant digits will not be limited.</dd>
- <dd>See <a href='#pow'><code>exponentiatedBy</code></a>.</dd>
- <dd><pre>BigNumber.config({ POW_PRECISION: 100 })</pre></dd>
- <dt id="format"><code><b>FORMAT</b></code></dt>
- <dd><i>object</i></dd>
- <dd>
- The <code>FORMAT</code> object configures the format of the string returned by the
- <a href='#toFor'><code>toFormat</code></a> method.
- </dd>
- <dd>
- The example below shows the properties of the <code>FORMAT</code> object that are
- recognised, and their default values.
- </dd>
- <dd>
- Unlike the other configuration properties, the values of the properties of the
- <code>FORMAT</code> object will not be checked for validity. The existing
- <code>FORMAT</code> object will simply be replaced by the object that is passed in.
- The object can include any number of the properties shown below.
- </dd>
- <dd>See <a href='#toFor'><code>toFormat</code></a> for examples of usage.</dd>
- <dd>
- <pre>
- BigNumber.config({
- FORMAT: {
- // string to prepend
- prefix: '',
- // decimal separator
- decimalSeparator: '.',
- // grouping separator of the integer part
- groupSeparator: ',',
- // primary grouping size of the integer part
- groupSize: 3,
- // secondary grouping size of the integer part
- secondaryGroupSize: 0,
- // grouping separator of the fraction part
- fractionGroupSeparator: ' ',
- // grouping size of the fraction part
- fractionGroupSize: 0,
- // string to append
- suffix: ''
- }
- });</pre>
- </dd>
- <dt id="alphabet"><code><b>ALPHABET</b></code></dt>
- <dd>
- <i>string</i><br />
- Default value: <code>'0123456789abcdefghijklmnopqrstuvwxyz'</code>
- </dd>
- <dd>
- The alphabet used for base conversion. The length of the alphabet corresponds to the
- maximum value of the base argument that can be passed to the
- <a href='#bignumber'><code>BigNumber</code></a> constructor or
- <a href='#toS'><code>toString</code></a>.
- </dd>
- <dd>
- There is no maximum length for the alphabet, but it must be at least 2 characters long, and
- it must not contain whitespace or a repeated character, or the sign indicators
- <code>'+'</code> and <code>'-'</code>, or the decimal separator <code>'.'</code>.
- </dd>
- <dd>
- <pre>// duodecimal (base 12)
- BigNumber.config({ ALPHABET: '0123456789TE' })
- x = new BigNumber('T', 12)
- x.toString() // '10'
- x.toString(12) // 'T'</pre>
- </dd>
- </dl>
- <br /><br />
- <p>Returns an object with the above properties and their current values.</p>
- <p>
- Throws if <code>object</code> is not an object, or if an invalid value is assigned to
- one or more of the above properties. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- BigNumber.config({
- DECIMAL_PLACES: 40,
- ROUNDING_MODE: BigNumber.ROUND_HALF_CEIL,
- EXPONENTIAL_AT: [-10, 20],
- RANGE: [-500, 500],
- CRYPTO: true,
- MODULO_MODE: BigNumber.ROUND_FLOOR,
- POW_PRECISION: 80,
- FORMAT: {
- groupSize: 3,
- groupSeparator: ' ',
- decimalSeparator: ','
- },
- ALPHABET: '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
- });
- obj = BigNumber.config();
- obj.DECIMAL_PLACES // 40
- obj.RANGE // [-500, 500]</pre>
- <h5 id="isBigNumber">
- isBigNumber<code class='inset'>.isBigNumber(value) <i>⇒ boolean</i></code>
- </h5>
- <p><code>value</code>: <i>any</i><br /></p>
- <p>
- Returns <code>true</code> if <code>value</code> is a BigNumber instance, otherwise returns
- <code>false</code>.
- </p>
- <pre>x = 42
- y = new BigNumber(x)
- BigNumber.isBigNumber(x) // false
- y instanceof BigNumber // true
- BigNumber.isBigNumber(y) // true
- BN = BigNumber.clone();
- z = new BN(x)
- z instanceof BigNumber // false
- BigNumber.isBigNumber(z) // true</pre>
- <p>
- If <code>value</code> is a BigNumber instance and <code>BigNumber.DEBUG</code> is <code>true</code>,
- then this method will also check if <code>value</code> is well-formed, and throw if it is not.
- See <a href='#Errors'>Errors</a>.
- </p>
- <p>
- The check can be useful if creating a BigNumber from an object literal.
- See <a href='#bignumber'>BigNumber</a>.
- </p>
- <pre>
- x = new BigNumber(10)
- // Change x.c to an illegitimate value.
- x.c = NaN
- BigNumber.DEBUG = false
- // No error.
- BigNumber.isBigNumber(x) // true
- BigNumber.DEBUG = true
- // Error.
- BigNumber.isBigNumber(x) // '[BigNumber Error] Invalid BigNumber'</pre>
- <h5 id="max">maximum<code class='inset'>.max(n...) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <i>See <code><a href="#bignumber">BigNumber</a></code> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the maximum of the arguments.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <pre>x = new BigNumber('3257869345.0378653')
- BigNumber.maximum(4e9, x, '123456789.9') // '4000000000'
- arr = [12, '13', new BigNumber(14)]
- BigNumber.max.apply(null, arr) // '14'</pre>
- <h5 id="min">minimum<code class='inset'>.min(n...) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <i>See <code><a href="#bignumber">BigNumber</a></code> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the minimum of the arguments.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <pre>x = new BigNumber('3257869345.0378653')
- BigNumber.minimum(4e9, x, '123456789.9') // '123456789.9'
- arr = [2, new BigNumber(-14), '-15.9999', -12]
- BigNumber.min.apply(null, arr) // '-15.9999'</pre>
- <h5 id="random">
- random<code class='inset'>.random([dp]) <i>⇒ BigNumber</i></code>
- </h5>
- <p><code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive</p>
- <p>
- Returns a new BigNumber with a pseudo-random value equal to or greater than <code>0</code> and
- less than <code>1</code>.
- </p>
- <p>
- The return value will have <code>dp</code> decimal places (or less if trailing zeros are
- produced).<br />
- If <code>dp</code> is omitted then the number of decimal places will default to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> setting.
- </p>
- <p>
- Depending on the value of this BigNumber constructor's
- <a href='#crypto'><code>CRYPTO</code></a> setting and the support for the
- <code>crypto</code> object in the host environment, the random digits of the return value are
- generated by either <code>Math.random</code> (fastest), <code>crypto.getRandomValues</code>
- (Web Cryptography API in recent browsers) or <code>crypto.randomBytes</code> (Node.js).
- </p>
- <p>
- To be able to set <a href='#crypto'><code>CRYPTO</code></a> to <code>true</code> when using
- Node.js, the <code>crypto</code> object must be available globally:
- </p>
- <pre>// Node.js
- const crypto = require('crypto'); // CommonJS
- import * as crypto from 'crypto'; // ES module
- global.crypto = crypto;</pre>
- <p>
- If <a href='#crypto'><code>CRYPTO</code></a> is <code>true</code>, i.e. one of the
- <code>crypto</code> methods is to be used, the value of a returned BigNumber should be
- cryptographically-secure and statistically indistinguishable from a random value.
- </p>
- <p>
- Throws if <code>dp</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>BigNumber.config({ DECIMAL_PLACES: 10 })
- BigNumber.random() // '0.4117936847'
- BigNumber.random(20) // '0.78193327636914089009'</pre>
- <h5 id="sum">sum<code class='inset'>.sum(n...) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <i>See <code><a href="#bignumber">BigNumber</a></code> for further parameter details.</i>
- </p>
- <p>Returns a BigNumber whose value is the sum of the arguments.</p>
- <p>The return value is always exact and unrounded.</p>
- <pre>x = new BigNumber('3257869345.0378653')
- BigNumber.sum(4e9, x, '123456789.9') // '7381326134.9378653'
- arr = [2, new BigNumber(14), '15.9999', 12]
- BigNumber.sum.apply(null, arr) // '43.9999'</pre>
- <h4 id="constructor-properties">Properties</h4>
- <p>
- The library's enumerated rounding modes are stored as properties of the constructor.<br />
- (They are not referenced internally by the library itself.)
- </p>
- <p>
- Rounding modes <code>0</code> to <code>6</code> (inclusive) are the same as those of Java's
- BigDecimal class.
- </p>
- <table>
- <tr>
- <th>Property</th>
- <th>Value</th>
- <th>Description</th>
- </tr>
- <tr>
- <td id="round-up"><b>ROUND_UP</b></td>
- <td class='centre'>0</td>
- <td>Rounds away from zero</td>
- </tr>
- <tr>
- <td id="round-down"><b>ROUND_DOWN</b></td>
- <td class='centre'>1</td>
- <td>Rounds towards zero</td>
- </tr>
- <tr>
- <td id="round-ceil"><b>ROUND_CEIL</b></td>
- <td class='centre'>2</td>
- <td>Rounds towards <code>Infinity</code></td>
- </tr>
- <tr>
- <td id="round-floor"><b>ROUND_FLOOR</b></td>
- <td class='centre'>3</td>
- <td>Rounds towards <code>-Infinity</code></td>
- </tr>
- <tr>
- <td id="round-half-up"><b>ROUND_HALF_UP</b></td>
- <td class='centre'>4</td>
- <td>
- Rounds towards nearest neighbour.<br />
- If equidistant, rounds away from zero
- </td>
- </tr>
- <tr>
- <td id="round-half-down"><b>ROUND_HALF_DOWN</b></td>
- <td class='centre'>5</td>
- <td>
- Rounds towards nearest neighbour.<br />
- If equidistant, rounds towards zero
- </td>
- </tr>
- <tr>
- <td id="round-half-even"><b>ROUND_HALF_EVEN</b></td>
- <td class='centre'>6</td>
- <td>
- Rounds towards nearest neighbour.<br />
- If equidistant, rounds towards even neighbour
- </td>
- </tr>
- <tr>
- <td id="round-half-ceil"><b>ROUND_HALF_CEIL</b></td>
- <td class='centre'>7</td>
- <td>
- Rounds towards nearest neighbour.<br />
- If equidistant, rounds towards <code>Infinity</code>
- </td>
- </tr>
- <tr>
- <td id="round-half-floor"><b>ROUND_HALF_FLOOR</b></td>
- <td class='centre'>8</td>
- <td>
- Rounds towards nearest neighbour.<br />
- If equidistant, rounds towards <code>-Infinity</code>
- </td>
- </tr>
- </table>
- <pre>
- BigNumber.config({ ROUNDING_MODE: BigNumber.ROUND_CEIL })
- BigNumber.config({ ROUNDING_MODE: 2 }) // equivalent</pre>
- <h5 id="debug">DEBUG</h5>
- <p><i>undefined|false|true</i></p>
- <p>
- If <code>BigNumber.DEBUG</code> is set <code>true</code> then an error will be thrown
- if this <a href='#bignumber'>BigNumber</a> constructor receives an invalid value, such as
- a value of type <em>number</em> with more than <code>15</code> significant digits.
- See <a href='#bignumber'>BigNumber</a>.
- </p>
- <p>
- An error will also be thrown if the <code><a href='#isBigNumber'>isBigNumber</a></code>
- method receives a BigNumber that is not well-formed.
- See <code><a href='#isBigNumber'>isBigNumber</a></code>.
- </p>
- <pre>BigNumber.DEBUG = true</pre>
- <h3>INSTANCE</h3>
- <h4 id="prototype-methods">Methods</h4>
- <p>The methods inherited by a BigNumber instance from its constructor's prototype object.</p>
- <p>A BigNumber is immutable in the sense that it is not changed by its methods. </p>
- <p>
- The treatment of ±<code>0</code>, ±<code>Infinity</code> and <code>NaN</code> is
- consistent with how JavaScript treats these values.
- </p>
- <p>Many method names have a shorter alias.</p>
- <h5 id="abs">absoluteValue<code class='inset'>.abs() <i>⇒ BigNumber</i></code></h5>
- <p>
- Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of
- this BigNumber.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <pre>
- x = new BigNumber(-0.8)
- y = x.absoluteValue() // '0.8'
- z = y.abs() // '0.8'</pre>
- <h5 id="cmp">
- comparedTo<code class='inset'>.comparedTo(n [, base]) <i>⇒ number</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <table>
- <tr><th>Returns</th><th> </th></tr>
- <tr>
- <td class='centre'><code>1</code></td>
- <td>If the value of this BigNumber is greater than the value of <code>n</code></td>
- </tr>
- <tr>
- <td class='centre'><code>-1</code></td>
- <td>If the value of this BigNumber is less than the value of <code>n</code></td>
- </tr>
- <tr>
- <td class='centre'><code>0</code></td>
- <td>If this BigNumber and <code>n</code> have the same value</td>
- </tr>
- <tr>
- <td class='centre'><code>null</code></td>
- <td>If the value of either this BigNumber or <code>n</code> is <code>NaN</code></td>
- </tr>
- </table>
- <pre>
- x = new BigNumber(Infinity)
- y = new BigNumber(5)
- x.comparedTo(y) // 1
- x.comparedTo(x.minus(1)) // 0
- y.comparedTo(NaN) // null
- y.comparedTo('110', 2) // -1</pre>
- <h5 id="dp">
- decimalPlaces<code class='inset'>.dp([dp [, rm]]) <i>⇒ BigNumber|number</i></code>
- </h5>
- <p>
- <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
- </p>
- <p>
- If <code>dp</code> is a number, returns a BigNumber whose value is the value of this BigNumber
- rounded by rounding mode <code>rm</code> to a maximum of <code>dp</code> decimal places.
- </p>
- <p>
- If <code>dp</code> is omitted, or is <code>null</code> or <code>undefined</code>, the return
- value is the number of decimal places of the value of this BigNumber, or <code>null</code> if
- the value of this BigNumber is ±<code>Infinity</code> or <code>NaN</code>.
- </p>
- <p>
- If <code>rm</code> is omitted, or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
- </p>
- <p>
- Throws if <code>dp</code> or <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(1234.56)
- x.decimalPlaces(1) // '1234.6'
- x.dp() // 2
- x.decimalPlaces(2) // '1234.56'
- x.dp(10) // '1234.56'
- x.decimalPlaces(0, 1) // '1234'
- x.dp(0, 6) // '1235'
- x.decimalPlaces(1, 1) // '1234.5'
- x.dp(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
- x // '1234.56'
- y = new BigNumber('9.9e-101')
- y.dp() // 102</pre>
- <h5 id="div">dividedBy<code class='inset'>.div(n [, base]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber divided by
- <code>n</code>, rounded according to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> settings.
- </p>
- <pre>
- x = new BigNumber(355)
- y = new BigNumber(113)
- x.dividedBy(y) // '3.14159292035398230088'
- x.div(5) // '71'
- x.div(47, 16) // '5'</pre>
- <h5 id="divInt">
- dividedToIntegerBy<code class='inset'>.idiv(n [, base]) ⇒
- <i>BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the integer part of dividing the value of this BigNumber by
- <code>n</code>.
- </p>
- <pre>
- x = new BigNumber(5)
- y = new BigNumber(3)
- x.dividedToIntegerBy(y) // '1'
- x.idiv(0.7) // '7'
- x.idiv('0.f', 16) // '5'</pre>
- <h5 id="pow">
- exponentiatedBy<code class='inset'>.pow(n [, m]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i>: integer<br />
- <code>m</code>: <i>number|string|BigNumber</i>
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber exponentiated by
- <code>n</code>, i.e. raised to the power <code>n</code>, and optionally modulo a modulus
- <code>m</code>.
- </p>
- <p>
- Throws if <code>n</code> is not an integer. See <a href='#Errors'>Errors</a>.
- </p>
- <p>
- If <code>n</code> is negative the result is rounded according to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> settings.
- </p>
- <p>
- As the number of digits of the result of the power operation can grow so large so quickly,
- e.g. 123.456<sup>10000</sup> has over <code>50000</code> digits, the number of significant
- digits calculated is limited to the value of the
- <a href='#pow-precision'><code>POW_PRECISION</code></a> setting (unless a modulus
- <code>m</code> is specified).
- </p>
- <p>
- By default <a href='#pow-precision'><code>POW_PRECISION</code></a> is set to <code>0</code>.
- This means that an unlimited number of significant digits will be calculated, and that the
- method's performance will decrease dramatically for larger exponents.
- </p>
- <p>
- If <code>m</code> is specified and the value of <code>m</code>, <code>n</code> and this
- BigNumber are integers, and <code>n</code> is positive, then a fast modular exponentiation
- algorithm is used, otherwise the operation will be performed as
- <code>x.exponentiatedBy(n).modulo(m)</code> with a
- <a href='#pow-precision'><code>POW_PRECISION</code></a> of <code>0</code>.
- </p>
- <pre>
- Math.pow(0.7, 2) // 0.48999999999999994
- x = new BigNumber(0.7)
- x.exponentiatedBy(2) // '0.49'
- BigNumber(3).pow(-2) // '0.11111111111111111111'</pre>
- <h5 id="int">
- integerValue<code class='inset'>.integerValue([rm]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber rounded to an integer using
- rounding mode <code>rm</code>.
- </p>
- <p>
- If <code>rm</code> is omitted, or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
- </p>
- <p>
- Throws if <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(123.456)
- x.integerValue() // '123'
- x.integerValue(BigNumber.ROUND_CEIL) // '124'
- y = new BigNumber(-12.7)
- y.integerValue() // '-13'
- y.integerValue(BigNumber.ROUND_DOWN) // '-12'</pre>
- <p>
- The following is an example of how to add a prototype method that emulates JavaScript's
- <code>Math.round</code> function. <code>Math.ceil</code>, <code>Math.floor</code> and
- <code>Math.trunc</code> can be emulated in the same way with
- <code>BigNumber.ROUND_CEIL</code>, <code>BigNumber.ROUND_FLOOR</code> and
- <code> BigNumber.ROUND_DOWN</code> respectively.
- </p>
- <pre>
- BigNumber.prototype.round = function () {
- return this.integerValue(BigNumber.ROUND_HALF_CEIL);
- };
- x.round() // '123'</pre>
- <h5 id="eq">isEqualTo<code class='inset'>.eq(n [, base]) <i>⇒ boolean</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns <code>true</code> if the value of this BigNumber is equal to the value of
- <code>n</code>, otherwise returns <code>false</code>.<br />
- As with JavaScript, <code>NaN</code> does not equal <code>NaN</code>.
- </p>
- <p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
- <pre>
- 0 === 1e-324 // true
- x = new BigNumber(0)
- x.isEqualTo('1e-324') // false
- BigNumber(-0).eq(x) // true ( -0 === 0 )
- BigNumber(255).eq('ff', 16) // true
- y = new BigNumber(NaN)
- y.isEqualTo(NaN) // false</pre>
- <h5 id="isF">isFinite<code class='inset'>.isFinite() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the value of this BigNumber is a finite number, otherwise
- returns <code>false</code>.
- </p>
- <p>
- The only possible non-finite values of a BigNumber are <code>NaN</code>, <code>Infinity</code>
- and <code>-Infinity</code>.
- </p>
- <pre>
- x = new BigNumber(1)
- x.isFinite() // true
- y = new BigNumber(Infinity)
- y.isFinite() // false</pre>
- <p>
- Note: The native method <code>isFinite()</code> can be used if
- <code>n <= Number.MAX_VALUE</code>.
- </p>
- <h5 id="gt">isGreaterThan<code class='inset'>.gt(n [, base]) <i>⇒ boolean</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns <code>true</code> if the value of this BigNumber is greater than the value of
- <code>n</code>, otherwise returns <code>false</code>.
- </p>
- <p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
- <pre>
- 0.1 > (0.3 - 0.2) // true
- x = new BigNumber(0.1)
- x.isGreaterThan(BigNumber(0.3).minus(0.2)) // false
- BigNumber(0).gt(x) // false
- BigNumber(11, 3).gt(11.1, 2) // true</pre>
- <h5 id="gte">
- isGreaterThanOrEqualTo<code class='inset'>.gte(n [, base]) <i>⇒ boolean</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns <code>true</code> if the value of this BigNumber is greater than or equal to the value
- of <code>n</code>, otherwise returns <code>false</code>.
- </p>
- <p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
- <pre>
- (0.3 - 0.2) >= 0.1 // false
- x = new BigNumber(0.3).minus(0.2)
- x.isGreaterThanOrEqualTo(0.1) // true
- BigNumber(1).gte(x) // true
- BigNumber(10, 18).gte('i', 36) // true</pre>
- <h5 id="isInt">isInteger<code class='inset'>.isInteger() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the value of this BigNumber is an integer, otherwise returns
- <code>false</code>.
- </p>
- <pre>
- x = new BigNumber(1)
- x.isInteger() // true
- y = new BigNumber(123.456)
- y.isInteger() // false</pre>
- <h5 id="lt">isLessThan<code class='inset'>.lt(n [, base]) <i>⇒ boolean</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns <code>true</code> if the value of this BigNumber is less than the value of
- <code>n</code>, otherwise returns <code>false</code>.
- </p>
- <p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
- <pre>
- (0.3 - 0.2) < 0.1 // true
- x = new BigNumber(0.3).minus(0.2)
- x.isLessThan(0.1) // false
- BigNumber(0).lt(x) // true
- BigNumber(11.1, 2).lt(11, 3) // true</pre>
- <h5 id="lte">
- isLessThanOrEqualTo<code class='inset'>.lte(n [, base]) <i>⇒ boolean</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns <code>true</code> if the value of this BigNumber is less than or equal to the value of
- <code>n</code>, otherwise returns <code>false</code>.
- </p>
- <p>Note: This method uses the <a href='#cmp'><code>comparedTo</code></a> method internally.</p>
- <pre>
- 0.1 <= (0.3 - 0.2) // false
- x = new BigNumber(0.1)
- x.isLessThanOrEqualTo(BigNumber(0.3).minus(0.2)) // true
- BigNumber(-1).lte(x) // true
- BigNumber(10, 18).lte('i', 36) // true</pre>
- <h5 id="isNaN">isNaN<code class='inset'>.isNaN() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the value of this BigNumber is <code>NaN</code>, otherwise
- returns <code>false</code>.
- </p>
- <pre>
- x = new BigNumber(NaN)
- x.isNaN() // true
- y = new BigNumber('Infinity')
- y.isNaN() // false</pre>
- <p>Note: The native method <code>isNaN()</code> can also be used.</p>
- <h5 id="isNeg">isNegative<code class='inset'>.isNegative() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the sign of this BigNumber is negative, otherwise returns
- <code>false</code>.
- </p>
- <pre>
- x = new BigNumber(-0)
- x.isNegative() // true
- y = new BigNumber(2)
- y.isNegative() // false</pre>
- <p>Note: <code>n < 0</code> can be used if <code>n <= -Number.MIN_VALUE</code>.</p>
- <h5 id="isPos">isPositive<code class='inset'>.isPositive() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the sign of this BigNumber is positive, otherwise returns
- <code>false</code>.
- </p>
- <pre>
- x = new BigNumber(-0)
- x.isPositive() // false
- y = new BigNumber(2)
- y.isPositive() // true</pre>
- <h5 id="isZ">isZero<code class='inset'>.isZero() <i>⇒ boolean</i></code></h5>
- <p>
- Returns <code>true</code> if the value of this BigNumber is zero or minus zero, otherwise
- returns <code>false</code>.
- </p>
- <pre>
- x = new BigNumber(-0)
- x.isZero() && x.isNegative() // true
- y = new BigNumber(Infinity)
- y.isZero() // false</pre>
- <p>Note: <code>n == 0</code> can be used if <code>n >= Number.MIN_VALUE</code>.</p>
- <h5 id="minus">
- minus<code class='inset'>.minus(n [, base]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>Returns a BigNumber whose value is the value of this BigNumber minus <code>n</code>.</p>
- <p>The return value is always exact and unrounded.</p>
- <pre>
- 0.3 - 0.1 // 0.19999999999999998
- x = new BigNumber(0.3)
- x.minus(0.1) // '0.2'
- x.minus(0.6, 20) // '0'</pre>
- <h5 id="mod">modulo<code class='inset'>.mod(n [, base]) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber modulo <code>n</code>, i.e.
- the integer remainder of dividing this BigNumber by <code>n</code>.
- </p>
- <p>
- The value returned, and in particular its sign, is dependent on the value of the
- <a href='#modulo-mode'><code>MODULO_MODE</code></a> setting of this BigNumber constructor.
- If it is <code>1</code> (default value), the result will have the same sign as this BigNumber,
- and it will match that of Javascript's <code>%</code> operator (within the limits of double
- precision) and BigDecimal's <code>remainder</code> method.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <p>
- See <a href='#modulo-mode'><code>MODULO_MODE</code></a> for a description of the other
- modulo modes.
- </p>
- <pre>
- 1 % 0.9 // 0.09999999999999998
- x = new BigNumber(1)
- x.modulo(0.9) // '0.1'
- y = new BigNumber(33)
- y.mod('a', 33) // '3'</pre>
- <h5 id="times">
- multipliedBy<code class='inset'>.times(n [, base]) <i>⇒ BigNumber</i></code>
- </h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber multiplied by <code>n</code>.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <pre>
- 0.6 * 3 // 1.7999999999999998
- x = new BigNumber(0.6)
- y = x.multipliedBy(3) // '1.8'
- BigNumber('7e+500').times(y) // '1.26e+501'
- x.multipliedBy('-a', 16) // '-6'</pre>
- <h5 id="neg">negated<code class='inset'>.negated() <i>⇒ BigNumber</i></code></h5>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by
- <code>-1</code>.
- </p>
- <pre>
- x = new BigNumber(1.8)
- x.negated() // '-1.8'
- y = new BigNumber(-1.3)
- y.negated() // '1.3'</pre>
- <h5 id="plus">plus<code class='inset'>.plus(n [, base]) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number|string|BigNumber</i><br />
- <code>base</code>: <i>number</i><br />
- <i>See <a href="#bignumber">BigNumber</a> for further parameter details.</i>
- </p>
- <p>Returns a BigNumber whose value is the value of this BigNumber plus <code>n</code>.</p>
- <p>The return value is always exact and unrounded.</p>
- <pre>
- 0.1 + 0.2 // 0.30000000000000004
- x = new BigNumber(0.1)
- y = x.plus(0.2) // '0.3'
- BigNumber(0.7).plus(x).plus(y) // '1.1'
- x.plus('0.1', 8) // '0.225'</pre>
- <h5 id="sd">
- precision<code class='inset'>.sd([d [, rm]]) <i>⇒ BigNumber|number</i></code>
- </h5>
- <p>
- <code>d</code>: <i>number|boolean</i>: integer, <code>1</code> to <code>1e+9</code>
- inclusive, or <code>true</code> or <code>false</code><br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive.
- </p>
- <p>
- If <code>d</code> is a number, returns a BigNumber whose value is the value of this BigNumber
- rounded to a precision of <code>d</code> significant digits using rounding mode
- <code>rm</code>.
- </p>
- <p>
- If <code>d</code> is omitted or is <code>null</code> or <code>undefined</code>, the return
- value is the number of significant digits of the value of this BigNumber, or <code>null</code>
- if the value of this BigNumber is ±<code>Infinity</code> or <code>NaN</code>.
- </p>
- <p>
- If <code>d</code> is <code>true</code> then any trailing zeros of the integer
- part of a number are counted as significant digits, otherwise they are not.
- </p>
- <p>
- If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> will be used.
- </p>
- <p>
- Throws if <code>d</code> or <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(9876.54321)
- x.precision(6) // '9876.54'
- x.sd() // 9
- x.precision(6, BigNumber.ROUND_UP) // '9876.55'
- x.sd(2) // '9900'
- x.precision(2, 1) // '9800'
- x // '9876.54321'
- y = new BigNumber(987000)
- y.precision() // 3
- y.sd(true) // 6</pre>
- <h5 id="shift">shiftedBy<code class='inset'>.shiftedBy(n) <i>⇒ BigNumber</i></code></h5>
- <p>
- <code>n</code>: <i>number</i>: integer,
- <code>-9007199254740991</code> to <code>9007199254740991</code> inclusive
- </p>
- <p>
- Returns a BigNumber whose value is the value of this BigNumber shifted by <code>n</code>
- places.
- <p>
- The shift is of the decimal point, i.e. of powers of ten, and is to the left if <code>n</code>
- is negative or to the right if <code>n</code> is positive.
- </p>
- <p>The return value is always exact and unrounded.</p>
- <p>
- Throws if <code>n</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(1.23)
- x.shiftedBy(3) // '1230'
- x.shiftedBy(-3) // '0.00123'</pre>
- <h5 id="sqrt">squareRoot<code class='inset'>.sqrt() <i>⇒ BigNumber</i></code></h5>
- <p>
- Returns a BigNumber whose value is the square root of the value of this BigNumber,
- rounded according to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a> and
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> settings.
- </p>
- <p>
- The return value will be correctly rounded, i.e. rounded as if the result was first calculated
- to an infinite number of correct digits before rounding.
- </p>
- <pre>
- x = new BigNumber(16)
- x.squareRoot() // '4'
- y = new BigNumber(3)
- y.sqrt() // '1.73205080756887729353'</pre>
- <h5 id="toE">
- toExponential<code class='inset'>.toExponential([dp [, rm]]) <i>⇒ string</i></code>
- </h5>
- <p>
- <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
- </p>
- <p>
- Returns a string representing the value of this BigNumber in exponential notation rounded
- using rounding mode <code>rm</code> to <code>dp</code> decimal places, i.e with one digit
- before the decimal point and <code>dp</code> digits after it.
- </p>
- <p>
- If the value of this BigNumber in exponential notation has fewer than <code>dp</code> fraction
- digits, the return value will be appended with zeros accordingly.
- </p>
- <p>
- If <code>dp</code> is omitted, or is <code>null</code> or <code>undefined</code>, the number
- of digits after the decimal point defaults to the minimum number of digits necessary to
- represent the value exactly.<br />
- If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
- </p>
- <p>
- Throws if <code>dp</code> or <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = 45.6
- y = new BigNumber(x)
- x.toExponential() // '4.56e+1'
- y.toExponential() // '4.56e+1'
- x.toExponential(0) // '5e+1'
- y.toExponential(0) // '5e+1'
- x.toExponential(1) // '4.6e+1'
- y.toExponential(1) // '4.6e+1'
- y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
- x.toExponential(3) // '4.560e+1'
- y.toExponential(3) // '4.560e+1'</pre>
- <h5 id="toFix">
- toFixed<code class='inset'>.toFixed([dp [, rm]]) <i>⇒ string</i></code>
- </h5>
- <p>
- <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
- </p>
- <p>
- Returns a string representing the value of this BigNumber in normal (fixed-point) notation
- rounded to <code>dp</code> decimal places using rounding mode <code>rm</code>.
- </p>
- <p>
- If the value of this BigNumber in normal notation has fewer than <code>dp</code> fraction
- digits, the return value will be appended with zeros accordingly.
- </p>
- <p>
- Unlike <code>Number.prototype.toFixed</code>, which returns exponential notation if a number
- is greater or equal to <code>10<sup>21</sup></code>, this method will always return normal
- notation.
- </p>
- <p>
- If <code>dp</code> is omitted or is <code>null</code> or <code>undefined</code>, the return
- value will be unrounded and in normal notation. This is also unlike
- <code>Number.prototype.toFixed</code>, which returns the value to zero decimal places.<br />
- It is useful when fixed-point notation is required and the current
- <a href="#exponential-at"><code>EXPONENTIAL_AT</code></a> setting causes
- <code><a href='#toS'>toString</a></code> to return exponential notation.<br />
- If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
- </p>
- <p>
- Throws if <code>dp</code> or <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = 3.456
- y = new BigNumber(x)
- x.toFixed() // '3'
- y.toFixed() // '3.456'
- y.toFixed(0) // '3'
- x.toFixed(2) // '3.46'
- y.toFixed(2) // '3.46'
- y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
- x.toFixed(5) // '3.45600'
- y.toFixed(5) // '3.45600'</pre>
- <h5 id="toFor">
- toFormat<code class='inset'>.toFormat([dp [, rm[, format]]]) <i>⇒ string</i></code>
- </h5>
- <p>
- <code>dp</code>: <i>number</i>: integer, <code>0</code> to <code>1e+9</code> inclusive<br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive<br />
- <code>format</code>: <i>object</i>: see <a href='#format'><code>FORMAT</code></a>
- </p>
- <p>
- <p>
- Returns a string representing the value of this BigNumber in normal (fixed-point) notation
- rounded to <code>dp</code> decimal places using rounding mode <code>rm</code>, and formatted
- according to the properties of the <code>format</code> object.
- </p>
- <p>
- See <a href='#format'><code>FORMAT</code></a> and the examples below for the properties of the
- <code>format</code> object, their types, and their usage. A formatting object may contain
- some or all of the recognised properties.
- </p>
- <p>
- If <code>dp</code> is omitted or is <code>null</code> or <code>undefined</code>, then the
- return value is not rounded to a fixed number of decimal places.<br />
- If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.<br />
- If <code>format</code> is omitted or is <code>null</code> or <code>undefined</code>, the
- <a href='#format'><code>FORMAT</code></a> object is used.
- </p>
- <p>
- Throws if <code>dp</code>, <code>rm</code> or <code>format</code> is invalid. See
- <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- fmt = {
- prefix: '',
- decimalSeparator: '.',
- groupSeparator: ',',
- groupSize: 3,
- secondaryGroupSize: 0,
- fractionGroupSeparator: ' ',
- fractionGroupSize: 0,
- suffix: ''
- }
- x = new BigNumber('123456789.123456789')
- // Set the global formatting options
- BigNumber.config({ FORMAT: fmt })
- x.toFormat() // '123,456,789.123456789'
- x.toFormat(3) // '123,456,789.123'
- // If a reference to the object assigned to FORMAT has been retained,
- // the format properties can be changed directly
- fmt.groupSeparator = ' '
- fmt.fractionGroupSize = 5
- x.toFormat() // '123 456 789.12345 6789'
- // Alternatively, pass the formatting options as an argument
- fmt = {
- prefix: '=> ',
- decimalSeparator: ',',
- groupSeparator: '.',
- groupSize: 3,
- secondaryGroupSize: 2
- }
- x.toFormat() // '123 456 789.12345 6789'
- x.toFormat(fmt) // '=> 12.34.56.789,123456789'
- x.toFormat(2, fmt) // '=> 12.34.56.789,12'
- x.toFormat(3, BigNumber.ROUND_UP, fmt) // '=> 12.34.56.789,124'</pre>
- <h5 id="toFr">
- toFraction<code class='inset'>.toFraction([maximum_denominator])
- <i>⇒ [BigNumber, BigNumber]</i></code>
- </h5>
- <p>
- <code>maximum_denominator</code>:
- <i>number|string|BigNumber</i>: integer >= <code>1</code> and <=
- <code>Infinity</code>
- </p>
- <p>
- Returns an array of two BigNumbers representing the value of this BigNumber as a simple
- fraction with an integer numerator and an integer denominator. The denominator will be a
- positive non-zero value less than or equal to <code>maximum_denominator</code>.
- </p>
- <p>
- If a <code>maximum_denominator</code> is not specified, or is <code>null</code> or
- <code>undefined</code>, the denominator will be the lowest value necessary to represent the
- number exactly.
- </p>
- <p>
- Throws if <code>maximum_denominator</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(1.75)
- x.toFraction() // '7, 4'
- pi = new BigNumber('3.14159265358')
- pi.toFraction() // '157079632679,50000000000'
- pi.toFraction(100000) // '312689, 99532'
- pi.toFraction(10000) // '355, 113'
- pi.toFraction(100) // '311, 99'
- pi.toFraction(10) // '22, 7'
- pi.toFraction(1) // '3, 1'</pre>
- <h5 id="toJSON">toJSON<code class='inset'>.toJSON() <i>⇒ string</i></code></h5>
- <p>As <a href='#valueOf'><code>valueOf</code></a>.</p>
- <pre>
- x = new BigNumber('177.7e+457')
- y = new BigNumber(235.4325)
- z = new BigNumber('0.0098074')
- // Serialize an array of three BigNumbers
- str = JSON.stringify( [x, y, z] )
- // "["1.777e+459","235.4325","0.0098074"]"
- // Return an array of three BigNumbers
- JSON.parse(str, function (key, val) {
- return key === '' ? val : new BigNumber(val)
- })</pre>
- <h5 id="toN">toNumber<code class='inset'>.toNumber() <i>⇒ number</i></code></h5>
- <p>Returns the value of this BigNumber as a JavaScript number primitive.</p>
- <p>
- This method is identical to using type coercion with the unary plus operator.
- </p>
- <pre>
- x = new BigNumber(456.789)
- x.toNumber() // 456.789
- +x // 456.789
- y = new BigNumber('45987349857634085409857349856430985')
- y.toNumber() // 4.598734985763409e+34
- z = new BigNumber(-0)
- 1 / z.toNumber() // -Infinity
- 1 / +z // -Infinity</pre>
- <h5 id="toP">
- toPrecision<code class='inset'>.toPrecision([sd [, rm]]) <i>⇒ string</i></code>
- </h5>
- <p>
- <code>sd</code>: <i>number</i>: integer, <code>1</code> to <code>1e+9</code> inclusive<br />
- <code>rm</code>: <i>number</i>: integer, <code>0</code> to <code>8</code> inclusive
- </p>
- <p>
- Returns a string representing the value of this BigNumber rounded to <code>sd</code>
- significant digits using rounding mode <code>rm</code>.
- </p>
- <p>
- If <code>sd</code> is less than the number of digits necessary to represent the integer part
- of the value in normal (fixed-point) notation, then exponential notation is used.
- </p>
- <p>
- If <code>sd</code> is omitted, or is <code>null</code> or <code>undefined</code>, then the
- return value is the same as <code>n.toString()</code>.<br />
- If <code>rm</code> is omitted or is <code>null</code> or <code>undefined</code>,
- <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> is used.
- </p>
- <p>
- Throws if <code>sd</code> or <code>rm</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = 45.6
- y = new BigNumber(x)
- x.toPrecision() // '45.6'
- y.toPrecision() // '45.6'
- x.toPrecision(1) // '5e+1'
- y.toPrecision(1) // '5e+1'
- y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
- y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
- x.toPrecision(5) // '45.600'
- y.toPrecision(5) // '45.600'</pre>
- <h5 id="toS">toString<code class='inset'>.toString([base]) <i>⇒ string</i></code></h5>
- <p>
- <code>base</code>: <i>number</i>: integer, <code>2</code> to <code>ALPHABET.length</code>
- inclusive (see <a href='#alphabet'><code>ALPHABET</code></a>).
- </p>
- <p>
- Returns a string representing the value of this BigNumber in the specified base, or base
- <code>10</code> if <code>base</code> is omitted or is <code>null</code> or
- <code>undefined</code>.
- </p>
- <p>
- For bases above <code>10</code>, and using the default base conversion alphabet
- (see <a href='#alphabet'><code>ALPHABET</code></a>), values from <code>10</code> to
- <code>35</code> are represented by <code>a-z</code>
- (as with <code>Number.prototype.toString</code>).
- </p>
- <p>
- If a base is specified the value is rounded according to the current
- <a href='#decimal-places'><code>DECIMAL_PLACES</code></a>
- and <a href='#rounding-mode'><code>ROUNDING_MODE</code></a> settings.
- </p>
- <p>
- If a base is not specified, and this BigNumber has a positive
- exponent that is equal to or greater than the positive component of the
- current <a href="#exponential-at"><code>EXPONENTIAL_AT</code></a> setting,
- or a negative exponent equal to or less than the negative component of the
- setting, then exponential notation is returned.
- </p>
- <p>If <code>base</code> is <code>null</code> or <code>undefined</code> it is ignored.</p>
- <p>
- Throws if <code>base</code> is invalid. See <a href='#Errors'>Errors</a>.
- </p>
- <pre>
- x = new BigNumber(750000)
- x.toString() // '750000'
- BigNumber.config({ EXPONENTIAL_AT: 5 })
- x.toString() // '7.5e+5'
- y = new BigNumber(362.875)
- y.toString(2) // '101101010.111'
- y.toString(9) // '442.77777777777777777778'
- y.toString(32) // 'ba.s'
- BigNumber.config({ DECIMAL_PLACES: 4 });
- z = new BigNumber('1.23456789')
- z.toString() // '1.23456789'
- z.toString(10) // '1.2346'</pre>
- <h5 id="valueOf">valueOf<code class='inset'>.valueOf() <i>⇒ string</i></code></h5>
- <p>
- As <a href='#toS'><code>toString</code></a>, but does not accept a base argument and includes
- the minus sign for negative zero.
- </p>
- <pre>
- x = new BigNumber('-0')
- x.toString() // '0'
- x.valueOf() // '-0'
- y = new BigNumber('1.777e+457')
- y.valueOf() // '1.777e+457'</pre>
- <h4 id="instance-properties">Properties</h4>
- <p>The properties of a BigNumber instance:</p>
- <table>
- <tr>
- <th>Property</th>
- <th>Description</th>
- <th>Type</th>
- <th>Value</th>
- </tr>
- <tr>
- <td class='centre' id='coefficient'><b>c</b></td>
- <td>coefficient<sup>*</sup></td>
- <td><i>number</i><code>[]</code></td>
- <td> Array of base <code>1e14</code> numbers</td>
- </tr>
- <tr>
- <td class='centre' id='exponent'><b>e</b></td>
- <td>exponent</td>
- <td><i>number</i></td>
- <td>Integer, <code>-1000000000</code> to <code>1000000000</code> inclusive</td>
- </tr>
- <tr>
- <td class='centre' id='sign'><b>s</b></td>
- <td>sign</td>
- <td><i>number</i></td>
- <td><code>-1</code> or <code>1</code></td>
- </tr>
- </table>
- <p><sup>*</sup>significand</p>
- <p>
- The value of any of the <code>c</code>, <code>e</code> and <code>s</code> properties may also
- be <code>null</code>.
- </p>
- <p>
- The above properties are best considered to be read-only. In early versions of this library it
- was okay to change the exponent of a BigNumber by writing to its exponent property directly,
- but this is no longer reliable as the value of the first element of the coefficient array is
- now dependent on the exponent.
- </p>
- <p>
- Note that, as with JavaScript numbers, the original exponent and fractional trailing zeros are
- not necessarily preserved.
- </p>
- <pre>x = new BigNumber(0.123) // '0.123'
- x.toExponential() // '1.23e-1'
- x.c // '1,2,3'
- x.e // -1
- x.s // 1
- y = new Number(-123.4567000e+2) // '-12345.67'
- y.toExponential() // '-1.234567e+4'
- z = new BigNumber('-123.4567000e+2') // '-12345.67'
- z.toExponential() // '-1.234567e+4'
- z.c // '1,2,3,4,5,6,7'
- z.e // 4
- z.s // -1</pre>
- <h4 id="zero-nan-infinity">Zero, NaN and Infinity</h4>
- <p>
- The table below shows how ±<code>0</code>, <code>NaN</code> and
- ±<code>Infinity</code> are stored.
- </p>
- <table>
- <tr>
- <th> </th>
- <th class='centre'>c</th>
- <th class='centre'>e</th>
- <th class='centre'>s</th>
- </tr>
- <tr>
- <td>±0</td>
- <td><code>[0]</code></td>
- <td><code>0</code></td>
- <td><code>±1</code></td>
- </tr>
- <tr>
- <td>NaN</td>
- <td><code>null</code></td>
- <td><code>null</code></td>
- <td><code>null</code></td>
- </tr>
- <tr>
- <td>±Infinity</td>
- <td><code>null</code></td>
- <td><code>null</code></td>
- <td><code>±1</code></td>
- </tr>
- </table>
- <pre>
- x = new Number(-0) // 0
- 1 / x == -Infinity // true
- y = new BigNumber(-0) // '0'
- y.c // '0' ( [0].toString() )
- y.e // 0
- y.s // -1</pre>
- <h4 id='Errors'>Errors</h4>
- <p>The table below shows the errors that are thrown.</p>
- <p>
- The errors are generic <code>Error</code> objects whose message begins
- <code>'[BigNumber Error]'</code>.
- </p>
- <table class='error-table'>
- <tr>
- <th>Method</th>
- <th>Throws</th>
- </tr>
- <tr>
- <td rowspan=6>
- <code>BigNumber</code><br />
- <code>comparedTo</code><br />
- <code>dividedBy</code><br />
- <code>dividedToIntegerBy</code><br />
- <code>isEqualTo</code><br />
- <code>isGreaterThan</code><br />
- <code>isGreaterThanOrEqualTo</code><br />
- <code>isLessThan</code><br />
- <code>isLessThanOrEqualTo</code><br />
- <code>minus</code><br />
- <code>modulo</code><br />
- <code>plus</code><br />
- <code>multipliedBy</code>
- </td>
- <td>Base not a primitive number</td>
- </tr>
- <tr>
- <td>Base not an integer</td>
- </tr>
- <tr>
- <td>Base out of range</td>
- </tr>
- <tr>
- <td>Number primitive has more than 15 significant digits<sup>*</sup></td>
- </tr>
- <tr>
- <td>Not a base... number<sup>*</sup></td>
- </tr>
- <tr>
- <td>Not a number<sup>*</sup></td>
- </tr>
- <tr>
- <td><code>clone</code></td>
- <td>Object expected</td>
- </tr>
- <tr>
- <td rowspan=24><code>config</code></td>
- <td>Object expected</td>
- </tr>
- <tr>
- <td><code>DECIMAL_PLACES</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>DECIMAL_PLACES</code> not an integer</td>
- </tr>
- <tr>
- <td><code>DECIMAL_PLACES</code> out of range</td>
- </tr>
- <tr>
- <td><code>ROUNDING_MODE</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>ROUNDING_MODE</code> not an integer</td>
- </tr>
- <tr>
- <td><code>ROUNDING_MODE</code> out of range</td>
- </tr>
- <tr>
- <td><code>EXPONENTIAL_AT</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>EXPONENTIAL_AT</code> not an integer</td>
- </tr>
- <tr>
- <td><code>EXPONENTIAL_AT</code> out of range</td>
- </tr>
- <tr>
- <td><code>RANGE</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>RANGE</code> not an integer</td>
- </tr>
- <tr>
- <td><code>RANGE</code> cannot be zero</td>
- </tr>
- <tr>
- <td><code>RANGE</code> cannot be zero</td>
- </tr>
- <tr>
- <td><code>CRYPTO</code> not true or false</td>
- </tr>
- <tr>
- <td><code>crypto</code> unavailable</td>
- </tr>
- <tr>
- <td><code>MODULO_MODE</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>MODULO_MODE</code> not an integer</td>
- </tr>
- <tr>
- <td><code>MODULO_MODE</code> out of range</td>
- </tr>
- <tr>
- <td><code>POW_PRECISION</code> not a primitive number</td>
- </tr>
- <tr>
- <td><code>POW_PRECISION</code> not an integer</td>
- </tr>
- <tr>
- <td><code>POW_PRECISION</code> out of range</td>
- </tr>
- <tr>
- <td><code>FORMAT</code> not an object</td>
- </tr>
- <tr>
- <td><code>ALPHABET</code> invalid</td>
- </tr>
- <tr>
- <td rowspan=3>
- <code>decimalPlaces</code><br />
- <code>precision</code><br />
- <code>random</code><br />
- <code>shiftedBy</code><br />
- <code>toExponential</code><br />
- <code>toFixed</code><br />
- <code>toFormat</code><br />
- <code>toPrecision</code>
- </td>
- <td>Argument not a primitive number</td>
- </tr>
- <tr>
- <td>Argument not an integer</td>
- </tr>
- <tr>
- <td>Argument out of range</td>
- </tr>
- <tr>
- <td>
- <code>decimalPlaces</code><br />
- <code>precision</code>
- </td>
- <td>Argument not true or false</td>
- </tr>
- <tr>
- <td><code>exponentiatedBy</code></td>
- <td>Argument not an integer</td>
- </tr>
- <tr>
- <td><code>isBigNumber</code></td>
- <td>Invalid BigNumber<sup>*</sup></td>
- </tr>
- <tr>
- <td>
- <code>minimum</code><br />
- <code>maximum</code>
- </td>
- <td>Not a number<sup>*</sup></td>
- </tr>
- <tr>
- <td>
- <code>random</code>
- </td>
- <td>crypto unavailable</td>
- </tr>
- <tr>
- <td>
- <code>toFormat</code>
- </td>
- <td>Argument not an object</td>
- </tr>
- <tr>
- <td rowspan=2><code>toFraction</code></td>
- <td>Argument not an integer</td>
- </tr>
- <tr>
- <td>Argument out of range</td>
- </tr>
- <tr>
- <td rowspan=3><code>toString</code></td>
- <td>Base not a primitive number</td>
- </tr>
- <tr>
- <td>Base not an integer</td>
- </tr>
- <tr>
- <td>Base out of range</td>
- </tr>
- </table>
- <p><sup>*</sup>Only thrown if <code>BigNumber.DEBUG</code> is <code>true</code>.</p>
- <p>To determine if an exception is a BigNumber Error:</p>
- <pre>
- try {
- // ...
- } catch (e) {
- if (e instanceof Error && e.message.indexOf('[BigNumber Error]') === 0) {
- // ...
- }
- }</pre>
- <h4 id="type-coercion">Type coercion</h4>
- <p>
- To prevent the accidental use of a BigNumber in primitive number operations, or the
- accidental addition of a BigNumber to a string, the <code>valueOf</code> method can be safely
- overwritten as shown below.
- </p>
- <p>
- The <a href='#valueOf'><code>valueOf</code></a> method is the same as the
- <a href='#toJSON'><code>toJSON</code></a> method, and both are the same as the
- <a href='#toS'><code>toString</code></a> method except they do not take a <code>base</code>
- argument and they include the minus sign for negative zero.
- </p>
- <pre>
- BigNumber.prototype.valueOf = function () {
- throw Error('valueOf called!')
- }
- x = new BigNumber(1)
- x / 2 // '[BigNumber Error] valueOf called!'
- x + 'abc' // '[BigNumber Error] valueOf called!'
- </pre>
- <h4 id='faq'>FAQ</h4>
- <h6>Why are trailing fractional zeros removed from BigNumbers?</h6>
- <p>
- Some arbitrary-precision libraries retain trailing fractional zeros as they can indicate the
- precision of a value. This can be useful but the results of arithmetic operations can be
- misleading.
- </p>
- <pre>
- x = new BigDecimal("1.0")
- y = new BigDecimal("1.1000")
- z = x.add(y) // 2.1000
- x = new BigDecimal("1.20")
- y = new BigDecimal("3.45000")
- z = x.multiply(y) // 4.1400000</pre>
- <p>
- To specify the precision of a value is to specify that the value lies
- within a certain range.
- </p>
- <p>
- In the first example, <code>x</code> has a value of <code>1.0</code>. The trailing zero shows
- the precision of the value, implying that it is in the range <code>0.95</code> to
- <code>1.05</code>. Similarly, the precision indicated by the trailing zeros of <code>y</code>
- indicates that the value is in the range <code>1.09995</code> to <code>1.10005</code>.
- </p>
- <p>
- If we add the two lowest values in the ranges we have, <code>0.95 + 1.09995 = 2.04995</code>,
- and if we add the two highest values we have, <code>1.05 + 1.10005 = 2.15005</code>, so the
- range of the result of the addition implied by the precision of its operands is
- <code>2.04995</code> to <code>2.15005</code>.
- </p>
- <p>
- The result given by BigDecimal of <code>2.1000</code> however, indicates that the value is in
- the range <code>2.09995</code> to <code>2.10005</code> and therefore the precision implied by
- its trailing zeros may be misleading.
- </p>
- <p>
- In the second example, the true range is <code>4.122744</code> to <code>4.157256</code> yet
- the BigDecimal answer of <code>4.1400000</code> indicates a range of <code>4.13999995</code>
- to <code>4.14000005</code>. Again, the precision implied by the trailing zeros may be
- misleading.
- </p>
- <p>
- This library, like binary floating point and most calculators, does not retain trailing
- fractional zeros. Instead, the <code>toExponential</code>, <code>toFixed</code> and
- <code>toPrecision</code> methods enable trailing zeros to be added if and when required.<br />
- </p>
- </div>
- </body>
- </html>
|